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ABSTRACT

Relatively unmanaged interstitial areas at the resi-

dential–wildland interface can support the devel-

opment of novel woody plant communities.

Community assembly processes in urban areas in-

volve interactions between spontaneous and culti-

vated species pools that include native, introduced

(exotic/non-native) and invasive species. The

potential of these communities to spread under

changing climate conditions has implications for

the future trajectories of forests within and beyond

urban areas. We quantified woody vegetation (in-

cluding trees and shrubs) in relatively unmanaged
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‘‘interstitial’’ areas at the residential–wildland

interface and in exurban reference natural areas in

six metropolitan regions across the continental

USA. In addition, we analyzed soil N and C cycling

processes to ensure that there were no major

anthropogenic differences between reference and

interstitial sites such as compaction, profile distur-

bance or fertilization, and to explore effects of no-

vel plant communities on soil processes. We

observed marked differences in woody plant com-

munity composition between interstitial and ref-

erence sites in most metropolitan regions. These

differences appeared to be driven by the expanded

species pool in urban areas. There were no obvious

anthropogenic effects on soils, enabling us to

determine that compositional differences between

interstitial and reference areas were associated with

variation in soil N availability. Our observations of

the formation of novel communities in interstitial

spaces in six cities across a very broad range of

climates, suggest that our results have relevance for

how forests within and beyond urban areas are

assessed and managed to provide ecosystem ser-

vices and resilience that rely on native biodiversity.

Key words: nitrogen cycling; carbon cycling;

woody plant community; urban land-use change;

urban–residential interface; novel ecosystems.

HIGHLIGHTS

� There are marked differences in woody plant

composition between interstitial areas—at resi-

dential-wildland interface—and natural refer-

ence areas across cities.

� Differences in woody plant composition were

related to variations in soil Nitrogen (N) avail-

ability.

� Novel communities in interstitial areas have

implications for management of ecosystem ser-

vices that rely on native biodiversity in forests

within and beyond urban areas.

INTRODUCTION

Urban expansion in the continental USA has cre-

ated large areas of urban, suburban and exurban

land-use intermixed with remnant native ecosys-

tems and agricultural land (Pouyat and others

2007). These land-use patterns are similar across

different climate regimes and biomes, creating

ecological homogenization at regional and conti-

nental scales (Groffman and others 2017). For

example, plant communities and functional diver-

sity in residential yards converge across the conti-

nental USA due to similarities in human

preferences and management (Polsky and others

2014; Locke and others 2019; Padullés Cubino and

others 2019b). Beyond residential yards, interac-

tions between human decisions and natural pro-

cesses of community assembly have the potential to

affect less populated areas surrounding the dense

urban core (Groffman and others 2014). In rela-

tively unmanaged interstitial spaces (that is, rem-

nant or spontaneously forested areas surrounded

by residential development), native and introduced

(exotic/non-native) vegetation (introduced to an

area outside its native ecosystem and reproduced

spontaneously; USDA, NRCS 2023) have the

potential to mix and assemble into new or novel

communities (Hobbs and others 2009; Andrade and

others 2021). These areas are common throughout

metropolitan areas but are especially common in

large and expanding suburban and exurban land

uses at the residential–wildland interface (Brown

and others 2005).

In this study, we addressed the question of

whether analysis of forests that have spontaneously

assembled in in urban interstitial spaces provides

insight into how global environmental change will

affect the forests of the future. We ask whether the

complex mix of anthropogenic factors affecting

these spaces (altered climate and atmospheric

chemistry, altered disturbance regimes, altered

species pool) is analogous to factors playing out

across the globe at lower intensity (McDonnell and

Pickett 1990). If so, the novel communities that

assemble in these spaces may provide a glimpse of

the forests that may become widespread across the

world.

Understanding processes of community assembly

in interstitial spaces requires an understanding of

the factors sorting for cultivated and spontaneous

species pools in urban ecosystems (Knapp and

others 2012; Pearse and others 2018; Lopez and

others 2018; Blouin and others 2019; Padullés

Cubino and others 2019a, b, 2020; Cavender-Bares

and others 2020). Native vegetation originates from

the pool of continental flora interacting with re-

gional climatic drivers, resulting in assemblages

adapted to the regional biome. These native species

interact with spontaneous (that is, self-propagated)

and cultivated species pools introduced by humans

(Pearse and others 2018; Avolio and others 2021).

The former results from the natural dispersal of

regional flora that adapt to or persist in the urban
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environment, and the latter include pools intro-

duced from the horticultural industry—primarily

determined by human preferences and policies.

Cultivated and horticultural species—including

both native and introduced (exotic/non-native)

species—that escape and establish on their own can

also become part of the urban spontaneous pool,

dispersing and mixing with regional and conti-

nental native flora to create novel communities

(Aronson and others 2016; Pearse and others 2018;

Blouin and others 2019; Cavender-Bares and oth-

ers 2020; Avolio and others 2021). The potential for

these novel communities to spread under changing

climatic conditions has implications (for example,

for ecosystem services, social benefits and potential

for biodiversity conservation) for the future tra-

jectories of forests within and beyond urban areas

(Hobbs and others 2006, 2009; Johnson and Han-

del 2016).

Novel ecosystems can differ in diversity, com-

position, age and structure from native ecosystems

and, therefore, potentially exhibit different

ecosystem functions (Hobbs and others 2009). In

urban areas, novel ecosystems can consist primarily

of species that are adapted to or persist under ur-

ban-associated stresses (for example, urban heat,

air, soil, light and noise pollution). Introduced (for

example, exotic/non-native)—including invasive

species—are disproportionately represented in ur-

ban species pools (Avolio and others 2015; Pregit-

zer and others 2019). Invasive species tend to

thrive in nutrient-rich soils, often escape natural

enemies and are frequently quick to establish in

unmanaged lands (Ehrenfeld 2003; Carreiro and

Tripler 2005; Heneghan and others 2004; Johnson

and Handel 2016). The presence of these species

has implications for the ecosystem functions and

services that rely on native biodiversity to support

food webs (Narango and others 2018; Tallamy and

others 2021), water resources (Richardson and van

Wilgen 2004; van Wilgen and others 2008; Le

Maitre and others 2000) and soil conservation

(Scott and others 1998).

Evaluation of community and ecosystem pro-

cesses in interstitial areas must consider soil prop-

erties. Urban soils are very heterogeneous (Pouyat

and others 2007). For example, while many urban

soil profiles have been markedly altered by physi-

cal, chemical and biological disturbance such as

compaction, atmospheric deposition and invasion

by exotic earthworms (Pouyat and others 2010;

Herrmann and others 2020), others are relatively

undisturbed (Raciti and others 2011; Trammell and

others 2020a; Ryan and others 2022). These alter-

ations, as well as natural variation in the properties

of relatively unaltered soil profiles, have marked

implications for plant community development and

ecosystem function (Frelich and others 2019). Soil

properties are thus potentially important drivers of

novel plant community structure and function in

interstitial areas and must be considered when

evaluating the potential of these novel communi-

ties to spread within and beyond urban areas. More

practically, if soils in interstitial areas have been

disturbed by site-specific activities such as tillage,

fertilization, compaction or pollution, the value of

these areas as locations for analysis of how forests

that have spontaneously assembled in in urban

interstitial spaces provide insight into how global

environmental change will affect the forests of the

future is reduced.

This study evaluated woody plant community

composition and soil microbial carbon (C) and

nitrogen (N) cycle processes in interstitial (rela-

tively unmanaged) and natural reference ecosys-

tems (representative of regional biomes) in six

metropolitan areas across the USA (Baltimore, MD;

Boston, MA; Los Angeles, CA; Miami, FL; Min-

neapolis-St. Paul, MN; Phoenix, AZ). We tested

whether woody plant community composition in

interstitial sites differed from that in natural refer-

ence sites and whether soil properties were related

to those differences. Woody community composi-

tion was measured to identify whether plant

assemblages included combinations of introduced

(for example, non-native/exotic) and native species

that differed from assemblages in natural reference

sites. We measured basic soil properties (moisture,

bulk density), soil microbial biomass C and N

content, basal respiration, inorganic N pools,

potential net N mineralization and nitrification,

and denitrification potential and visually inspected

soil profiles to ensure that there were no major

anthropogenic differences between reference and

interstitial sites such as compaction, profile distur-

bance or fertilization, and to explore effects of no-

vel plant communities on soil processes. We aimed

to answer two questions: (1) How does woody

plant community composition differ between

interstitial and natural reference sites? (2) Are

these differences in vegetation associated with

variation in soil C and N cycling processes? We

hypothesized that: (1) Woody plant community

composition in interstitial sites would differ from

that in reference sites, with higher proportion of

introduced species and (2) soil N cycling would be

altered in interstitial sites, with higher N pools and

rates of N cycling processes in the sites with plant

communities most distinct from those in reference

sites. Results were evaluated in terms of implica-
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tions for how forests within and beyond urban

areas are assessed and managed to provide ecosys-

tem services and resilience that rely on native

biodiversity.

METHODS

Site Selection

We sampled interstitial and reference sites in six

major US Metropolitan Statistical Areas (cities):

Boston, MA (BOS), Baltimore, MD (BAL), Los

Angeles, CA (LAX), Miami, FL (MIA), Min-

neapolis-St. Paul, MN (MSP) and Phoenix, AZ

(PHX) that represent different ecological biomes

and/or major climatic regions across the USA

(Trammell and others 2016). Within each region,

between four and six natural areas that represented

the dominant ecological biome(s) were selected as

reference sites. The natural areas were located in

protected areas with native vegetation (including

trees, shrubs and cacti) and were located 1 km or

more from other sites. Reference ecosystems in-

clude mature (over 75-year-old) oak and tulip po-

plar forests (BAL); mature (roughly 100-year-old)

northern oak-dominated hardwood forests (BOS);

remnant southern California chaparral (LAX);

coastal upland pine rockland, subtropical hard-

wood hammock, coastal hammock and pine flat-

woods (MIA); oak savanna on sandy outwash,

tallgrass prairie and bluff prairie on moraine, and

maple-basswood forest on moraine (MSP); and

native Sonoran Desert (PHX).

Interstitial sites were sampled (n = 4 to 6) on

public lands within each metropolitan area. These

sites were located in relatively unmanaged areas

(generally absent of intensive human intervention

such as plowing, mowing, irrigation, fertilization)

with vegetation that had developed spontaneously.

In addition, the selection criteria included sites with

natural soil profiles similar in texture and landscape

position to those in the reference areas, without

signs of anthropogenic soil disturbance. In some

cities, for example, Minneapolis-St.Paul this re-

quired distributing sites across different soil parent

materials. Unmanaged patches that fit these criteria

were located within the same region as the refer-

ence sites, either on the edge of the city, at the

interface with suburban residential land in public

parklands or woodlands (for more detailed

description, see Padullés Cubino and others 2020;

Lerman and others 2021a). Soil taxonomy was

identified using USDA Natural Resource Conser-

vation Service (NRCS) maps for each native refer-

ence and interstitial site in each city (Table S1).

Woody Vegetation Sampling

Within each interstitial and native reference site,

we established three 8-m radius plots to assess tree

(including shrubs and cacti in Phoenix) density,

basal area, height and condition (for example, live/

dead). Plot locations were randomly selected with a

Geographic Information System (GIS) mapping

tool before field sampling. We sampled all indi-

viduals above 1 m height with a stem greater than

2.54 cm diameter at breast height (DBH) in each

plot. We used the USDA Forest Service i-Tree Eco

v6.0 manual (https://www.itreetools.org/) as a

reference for recording species in the field. Woody

plant stems were split into understory (< 10 cm

DBH) and overstory (> 10 cm DBH). Species

identifications were cross-checked with World

Flora Online (formerly The Plant List), a compre-

hensive open-access database containing 400,000

recorded plant species contributed by various

institutions (http://www.worldfloraonline.org/),

the online tools for standardizing taxonomic names

Taxonomic Name Resolution Service version 5.0

(Boyle and others 2013; https://tnrs.biendata.org/)

and Integrated Taxonomic Information System

(ITIS) online database (https://itis.gov/citation.ht

ml). Species were also classified according to origin

(native or introduced) based on whether the spe-

cies was considered native or introduced to the

state it was sampled in according to the USDA

PLANTS database (https://plants.usda.gov). Intro-

duced species are defined as reproducing sponta-

neously in the wild without human help and tend

to persist, and invasives are defined as (1) non-

native (or alien) to the ecosystem under consider-

ation and (2) a species whose introduction causes

or is likely to cause economic harm, environmental

harm or harm to human health (USDA, NRCS,

2023). One reference site in Minneapolis-St. Paul

(Cedar Creek Ecosystem Science Reserve BU 103)

did not have woody plant species present

(Table S1).

Soil Sampling and Laboratory Analysis

Two soil cores up to 30 cm depth were collected at

random locations along transects at each site using

a 3.3-cm-diameter soil corer, enclosed in plastic

sleeves with end caps, put into coolers, and shipped

on ice to the Cary Institute of Ecosystem Studies,

Millbrook, NY, USA, where they were stored at

4 �C (up to 21 days) until they could be processed.

In the laboratory, analysis followed procedures

described by Raciti and others (2011) and Ryan and

others (2022). Soil cores were first visually in-
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spected for evidence of obvious anthropogenic

alteration of the soil profile and then divided into

0–10 cm and 10–30 cm sections. Coarse roots and

rocks (> 2 mm) were removed by hand. The sep-

arated roots and rocks were dried at 105 �C, and

rock volumes were estimated using an assumed

density of 2.7 g/cm3. Water content was measured

via gravimetric analysis, where soil samples were

dried for 48 h at 105 �C. Dried samples were used

to calculate bulk density (BD) as (total dry mass -

rock mass)/(total volume - rock volume). Soil or-

ganic matter content was measured by loss on

ignition at 450 �C. Cores were not available for one

reference site in Los Angeles (Zuma Canyon) and

one reference site in Miami (Pine Ridge Sanctuary;

Table S1).

Soil exchangeable nitrate (NO3
-) and ammo-

nium (NH4
+) were extracted in 2 M KCl and ana-

lyzed colorimetrically using a Lachat Flow Injection

Analyzer. Potential net N mineralization and

nitrification, and basal respiration were measured

in a 10-day laboratory incubation of soils at room

temperature and field moisture. Soils were placed

in glass jars fitted with rubber septa to allow for

sampling of headspace gas. After incubation, the

headspace of the jars was sampled and analyzed for

carbon dioxide (CO2) by gas chromatography with

a thermal conductivity detector, and soils were

extracted for NO3
- and NH4

+. Potential net N

mineralization was calculated as the total accu-

mulation of inorganic N, nitrification was calcu-

lated as the accumulation of NO3
-, and respiration

was calculated as the accumulation of the CO2

during the incubation (Robertson and others

1999).

Microbial biomass C and N content were mea-

sured using the chloroform fumigation–incubation

method (Jenkinson and Powlson 1976). Soil sam-

ples were fumigated with chloroform for up to 24 h

to lyse microbial cells, inoculated with 0.1 g fresh

soil and incubated for 10 days in mason jars with

fitted rubber septa. Microbial biomass C was cal-

culated from the production of CO2 in the fumi-

gated samples using a proportionality constant

(0.41). Microbial biomass N was not corrected with

a proportionality constant, and values are just the

inorganic produced over the 10-day incubation of

fumigated samples.

Rates of potential denitrification were measured

using the denitrification enzyme assay (Smith and

Tiedje 1979; Groffman and others 1999). Soil sub-

samples were amended with NO3
-, glucose, chlo-

ramphenicol and acetylene and incubated

anaerobically for 90 min. Gas samples were re-

moved after 30 and 90 min and analyzed for ni-

trous oxide (N2O) by gas chromatography with an

electron capture detector.

Data Analysis

All analyses were performed in R (version 3.3.3; R

Core Team 2019). To prepare the species data for

site- and city-level comparison, we first character-

ized woody plant structure in each plot in terms of

species’ relative abundance, frequency, dominance

and importance, and in terms of species diversity

(richness, evenness) to examine biodiversity pat-

terns. Relative abundance (RA) for each woody

plant species, that is, the proportion of individuals

of a particular species to the total number of indi-

viduals in a plot, was determined per plot. At each

site, frequency was recorded as the percentage of

plots in which a species was found, and relative

frequency (RF) was calculated as the proportion of

total frequency of all species to the total frequency

per plot. Relative dominance (RD) was calculated

as the proportion of basal area per species to the

total basal area per plot. Basal area was calculated

as (p � (DBH/2)2), and values were converted from

cm2 to m2. The importance value index (IVI),

which presents the ecological importance and

dominance of a species, was calculated as the sum

of RA, RF and RD (Curtis and McIntosh 1951).

Woody plant species diversity (richness and even-

ness) was calculated using the codyn package in R

(Hallett and others 2016) for each site. Species

richness was calculated as the overall number of

species, and community evenness was calculated as

the inverse of Simpson’s D. The relative proportion

of introduced species was calculated as the percent

abundance for canopy (DBH > 10 cm) and sapling

(DBH < 10 cm) layers. All plot-level values were

averaged for each interstitial and reference site.

To evaluate differences in species composition

(that is, the identity of species present in a com-

munity) among interstitial and reference areas, we

used non-metric multidimensional scaling (NMDS)

from the vegan package (Oksanen and others 2020).

NMDS is an unconstrained method that uses the

pairwise dissimilarity of species composition and

reduces dimensional space to better assess compo-

sitional differences between sites (Legendre and

Legendre 2012). We used Bray–Curtis dissimilarity,

which is a semi-metric index of distance between

species vectors and quantifies the compositional

dissimilarity between sites based on species abun-

dance data (Legendre and Legendre 2012). Species

contributions to vegetation patterns were deter-

mined using Pearson correlation coefficients be-

tween species abundance and NMDS dimensions

Woody plant-soil relationships in urban areas



with the ‘scores’ function included in the vegan

package in R (Brown 2019; Oksanen and others

2020). The ‘betadisper’ function was used to cal-

culate the homogeneity of group variances (dis-

tance between centroids and group means for

interstitial and reference sites). Finally, the ‘adonis’

function—a permutational analysis of vari-

ance—was applied using 999 permutations to test

compositional differences (differences in centroid

locations) between reference and interstitial sites.

To characterize and compare soil characteristics

between interstitial and reference sites, we aver-

aged whole-core (0–30 cm) estimates of microbial

biomass C and N, basal respiration, NO3
- NH4

+,

potential net N mineralization and nitrification,

denitrification potential, soil organic matter con-

tent and bulk density per site. We used bulk density

values to convert all soil parameters to an areal

basis (g/m2). For each soil parameter, departures

from normality were determined using Levene’s

test and to determine variances within land-use

type in each city. We compared whole-core differ-

ences between interstitial and reference sites be-

tween sites using the nonparametric Wilcoxon

rank sum test for each soil parameter.

To determine multivariate patterns in soil

parameters across interstitial and reference sites in

each city, we conducted principal component

analysis (PCA) using the ‘prcomp’ function in R.

The data were standardized (divided by their stan-

dard deviation) prior to performing the PCA.

Loadings were extracted for all soil parameters in

relation to each principal component to explain soil

patterns in ordination space. The soil parameters

used in the analyses were coded as microbial bio-

mass C (BiomassC), microbial biomass N (Bio-

massN), basal respiration (Respiration), NO3
-

(NO3), NH4
+ (NH4), total inorganic nitrogen (TIN),

potential net N mineralization (Mineralization),

potential net nitrification (Nitrification), denitrifi-

cation potential (DEA), organic matter content

(OM) and bulk density (BD).

To investigate relationships between woody

plant species composition and soil parameters, we

also ran a canonical correspondence analysis

(CCA), a constrained ordination method to analyze

associations between environmental variables and

community composition data, for each city. We

computed the variance inflation factor (VIF) using

the ‘vif.cca’ function to check for redundancy

among predictor variables (soil parameters). Con-

ventionally, VIF > 10 indicates high levels of

redundancy among the predictor variables that af-

fect model fit (Zuur and others 2009). The variables

which contributed to VIF > 10 were removed, and

the model was run again. Analysis of variance

(ANOVA) was conducted to test significance effects

of individual predictors (soil parameters) and of the

full model using 999 permutations.

RESULTS

Question#1: Does Woody Plant
Community Composition Differ Between
Reference and Interstitial Areas?

Across cities, there was no consistent difference in

mean woody plant species richness between refer-

ence and interstitial sites (Table 1). Baltimore had

the highest woody plant species richness in the

interstitial sites, in the sapling layer (9.4 ± 2.54).

Boston had the highest woody species richness in

the reference sites, also in the sapling layer

(6.6 ± 1.12). Woody plant communities were most

even (measured on a scale from 0 to 1, where 1 is

the most even) in interstitial sites in Boston and

Baltimore and in reference sites in Miami, Min-

neapolis-St. Paul, Los Angeles and Phoenix (Ta-

ble 1). Evenness was higher in the sapling layer of

interstitial sites for most cities, except for Baltimore

(0.88 vs. 0.56), but was higher in reference site

canopy layers for most cities (Table 1).

Overall, there was a higher proportion of intro-

duced species in interstitial sites than in natural

reference sites, except in Boston (30% vs. 50%,

respectively; Table 1). Overall, the sapling layer

(DBH < 10 cm) contained a greater proportion of

introduced species than the canopy layer (DBH >

10 cm), except in Minneapolis-St. Paul and Miami

reference sites (7.14% and 9.60%, respectively).

Introduced species were not found in any sites in

Los Angeles and Phoenix (Table 1).

Across cities, species abundance and dominance

differed between interstitial and reference sites, but

some species were present in both site types in most

cities (average of 37%; Table 2; Figure S1; Fig-

ure S2). The exceptions were Los Angeles and

Phoenix, which had fewer total species (Table 1),

and less compositional overlap (in Phoenix) be-

tween interstitial and reference sites (Table 2; Fig-

ures S1; Figures S2). In the majority of cities, native

species were the most abundant and dominant in

both interstitial and reference sites, with the

exception of Miami and Minneapolis-St. Paul,

where introduced species were more dominant in

interstitial sites (Table 2; Figures S1). Several native

species were common in temperate cities, for

example, Fraxinus pennsylvanica, Quercus velutina

and Quercus alba (Table 2; Figure S1; Figure S2).
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Non-metric multidimensional scaling (NMDS)

showed differences in woody plant community

composition between reference and interstitial sites

in most cities, as shown by the lack or minimal

overlap of group centroids among interstitial and

reference sites (Figure 1). However, there were

strong, but not statistically significant composi-

tional differences between interstitial and reference

sites in Los Angeles (r2 = 0.47, p = 0.10, respec-

tively; Table S2). Moreover, dispersion from group

centroids (homogeneity among group variances)

among interstitial and reference sites was signifi-

cant for Los Angeles and Phoenix (F1,3 = 35.66,

p = 0.008 and F1,6 = 8.20, p = 0.03, respectively;

Table S2). Native species were most important in

determining variation in composition along both

dimensions in the NMDS analysis (Table S3), ex-

cept for Baltimore, Boston and Minneapolis-St.

Paul (Figures 1b, 1f). In Baltimore, the introduced

species Prunus avium was significant (p = 0.013) at

explaining variation in species composition in sites

along MDS2. In Boston, species that were impor-

tant at explaining variations in species composition

in sites along MDS1 included Acer ginnala

(p = 0.011), Ailanthus altissima (p = 0.011), Lonicera

tatarica (p = 0.011), Malus floribunda (p = 0.034)

and Rhamnus cathartica (p = 0.011), while the cul-

tivated hybrid Tilia x europaea was significant

(p = 0.01) at explaining variation in community

composition in sites along MDS2 (Figure 1b;

Table S3). In Minneapolis-St. Paul, the introduced

species Rhamnus cathartica and Ulmus pumila were

significant (p = 0.03 and p = 0.003, respectively) at

explaining variation in community composition in

sites along MDS1 and MDS2, respectively (Fig-

ure 1f; Table S3).

Question #2: Is Woody Plant Community
Composition in Reference and Interstitial
Areas Related to Variation in Soil C
and N Cycling Processes?

Across all cities (Figure 2), N cycling variables

(inorganic N pools, microbial biomass N, potential

net N mineralization and nitrification) and carbon

cycling variables (organic matter content, microbial

biomass C, respiration) did not differ between ref-

erence and interstitial sites (Figure 2). On a city-by-

city basis, microbial biomass C was significantly

higher in reference sites in Boston (p < 0.05; Fig-

ure S4). There was marked variation in C and N

cycle variables among sites in each city (Fig-

ures S3–S8). There was no visual or taxonomic

evidence of extensive human alteration of inter-

stitial site soil profiles (Table S1), and there were no

consistent differences in soil moisture or bulk

density between interstitial and reference sites

(data not presented).

Across cities, at least 61% of the total variance in

soil parameters was explained by the first two

components (Dim1 and Dim2) in a principal com-

ponents analysis (Figure 3; Table S4). On average,

the first principal component (Dim1) explained

44.6% and the second principal component (Dim2)

explained 26.3%. of the variation in interstitial and

reference soils. Nitrogen cycle variables were the

most strongly loaded on the two principal compo-

Table 2. Percent of the Number of Species in Interstitial Sites, Reference Sites and Shared Between
Interstitial and Reference Sites in Each City (n = 6)

Cities Interstitial (%) Reference (%) Interstitial and reference (%)

Baltimore 54 46 32

Boston 64 36 26

Los Angeles 57 43 64

Miami 51 49 18

Minneapolis-St. Paul 50 50 20

Phoenix 40 60 20

cFigure 1. Interstitial and reference areas have distinct

woody species compositions. Non-metric

multidimensional scaling (NMDS) of woody community

composition in interstitial and reference sites in a

Baltimore, b Boston, c Los Angeles, d Miami, e

Minneapolis-St. Paul, f Phoenix. Plot points are based

on Bray–Curtis distances of relative abundance data.

Distance between points represents compositional

similarity, with closer points being more similar than

points further apart. Stress values for a 0.091, b 0.076, c

0, d 0.064, e 0.048, f 0.
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nent axes, especially Dim1. NO3
- and NH4

+

strongly loaded on Dim1 and Dim2 in every city,

except for Miami (Figure 3; Table S4). Potential net

nitrification and denitrification potential were

strongly loaded on Dim1 or Dim2 in every city

except for Los Angeles (Figure 3; Table S4).

Potential net nitrification, microbial biomass N and

total inorganic N had strong loadings with both

Dim1 and Dim2 in every city. Carbon cycle vari-

ables were rarely significantly loaded on either

Dim1 or Dim2 although organic matter and bulk

density were strongly loaded on Dim2 in Miami

(Figure 3; Table S4). Centroids of reference and

interstitial sites did not overlap, except in Los

Angeles and Miami. Variation among sites was

noticeable in many cities, with some interstitial and

reference sites having strong association with par-

ticular soil variables, while in other cities, site

variation was not strongly associated with soil

variables (Figure 3).

Across cities, in a canonical correlation analysis

(CCA) of woody plant community and soil vari-

ables, the proportion of variance explained by the

first CCA axis was at least 12%, and the second axis

explained at least 10% of the variation across both

interstitial and reference sites (Figure 4; Table S5).

Variance explained was higher (> 30%) in the

driest cities, Los Angeles and Phoenix, that had

many fewer species present (Figure 4; Table S5).

The proportion of variance in woody plant com-

munity composition explained by soil variables was

at least 62%, except in Phoenix (22%; Figure 4;

Table S5). While the number of soil variables that

influenced community composition varied per city,

some variables were consistent across cities (Fig-

ure 4; Table S5). For example, soil NO3
-, NH4

+ and

organic matter contents were related to woody

plant community composition in both interstitial

and reference sites in all cities except Phoenix

(Figure 4; Table S5). NO3
- and community com-

position were significant in Boston (p = 0.033) and

Miami (p = 0.004), while organic matter content

Figure 2. Mean values of soil (0–30 cm depth)

parameters in interstitial and reference sites over all

cities. Error bars represent ± SE. Bars with asterisks are

significantly different: *p < 0.05. Bars with NS = not

significant.

cFigure 3. Principal components analysis (PCA) showing

soil parameters across interstitial and reference sites in a

Baltimore, b Boston, c Los Angeles, d Miami, e

Minneapolis-St. Paul, f Phoenix. Soil parameter codes:

microbial biomass C (BiomassC), microbial biomass N

(BiomassN), basal respiration (Respiration), NO3
- (NO3),

NH4
+ (NH4), total inorganic N (TIN), potential net N

mineralization (Mineralization), potential net

nitrification (Nitrification), denitrification potential

(DEA), organic matter content (OM) and bulk density

(BD).
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was statistically significant in Baltimore (p = 0.019)

and Miami (p = 0.005, Figure 4; Table S5). Fur-

thermore, the CCA models were only statistically

significant in Baltimore (p = 0.044) and Miami

(p = 0.021) and marginally significant in Boston

(p = 0.064; Figure 4; Table S5).

DISCUSSION

In this study, we addressed the question if analysis

of forests that have spontaneously assembled in

urban interstitial spaces provides insight into how

global environmental change will affect the forests

of the future. We hypothesized that the complex

mix of anthropogenic factors affecting these spaces

(altered climate atmospheric chemistry, distur-

bance regimes and species pool) is analogous to

factors playing out across the globe at lower

intensity (McDonnell and Pickett 1990) and that

the novel communities that assemble in these

spaces provide a glimpse of the forests that may

become widespread beyond urban areas. Our

observations of marked differences in woody veg-

etation composition between interstitial and refer-

ence sites in six cities with very different climate

across the USA support this idea and provide in-

sight into the novel communities that may become

common across the USA over the next 50–

100 years. In the sections below, we first discuss

these differences in plant communities and then

discuss if local human alteration of soils has re-

duced the value of our sites as analogs for future

environmental conditions. Finally, we discuss the

effects of altered plant communities on soil pro-

cesses and ecosystem services.

The differences in woody plant communities

were most clearly shown by NMDS for Baltimore,

Boston, Los Angeles and Phoenix, where interstitial

and reference sites separated along NMDS axes

(Figure 1; Table S3). Even in cities that did not

show clear differences along the NMDS axes (for

example, Minneapolis-St. Paul), there was evi-

dence for clustering among the interstitial sites,

indicating that interstitial sites were more similar to

each other than reference sites. As we discuss be-

low, the differences between reference and inter-

stitial sites were likely the result of a greater

proportion of introduced species and higher species

richness in interstitial sites, especially in the sapling

layers (Table 1).

Our careful selection of sites allowed us to assess

how changes in plant community composition af-

fect soil N cycling, which is important for a variety

of ecosystem services (for example, primary pro-

ductivity). In our study sites, there were no

noticeable anthropogenic effects on soils, for

example, compaction, profile disturbance or fertil-

ization. Therefore, we were able to examine how

differences in plant community composition be-

tween interstitial and reference sites were associ-

ated with variation in N availability. This finding is

shown by separation of interstitial and reference

sites along PCA axes of soil characteristics in Bal-

timore, Boston, Los Angeles, Miami and Min-

neapolis-St. Paul in the PCA and by relationships

between N pools (NO3
-, NH4

+, TIN and microbial

biomass N) and woody vegetation composition in

the CCA. It is important to note that there were no

systematic differences in N availability between

interstitial and reference sites, and no evidence that

interstitial sites had artificially elevated N avail-

ability based on soil taxonomy (Table S1). Closely

matching the soil series allowed us to avoid differ-

ences in soil moisture retention and having the

sites interspersed across the region avoid local

pollution (for example, atmospheric N deposition)

gradients. Thus, careful selection of sites allows for

examination of how natural variation in N avail-

ability across native reference and interstitial sites is

a driver of woody plant community composition

(Table S3).

As detailed below, the differences that we ob-

served between interstitial and reference sites have

implications for how forests are assessed and

managed to provide ecosystem services related to

native species diversity, carbon storage and

ecosystem resilience to global environmental

change.

cFigure 4. Canonical correlation analysis (CCA) showing

similarity of woody species community composition in

relation to soil parameters among interstitial and

reference sites in a) Baltimore, b) Boston, c) Los

Angeles, d) Miami, e) Minneapolis-St. Paul, f) Phoenix.

Sites (green and yellow dots), tree species (open

triangles), soil parameters (black arrows): microbial

biomass C (BiomassC), microbial biomass N

(BiomassN), basal respiration (Respiration), NO3
-

(NO3), NH4
+ (NH4), total inorganic N (TIN), potential

net N mineralization (Mineralization), potential net

nitrification (Nitrification), denitrification potential

(DEA), organic matter content (OM) and bulk density

(BD). Distance between plot symbols indicates similarity

of species composition and abundance. The proportion of

variance explained by CCA1-CCA2 in each city a 17–

10%, b 17–10%, c 35%, d 14–10%, e 16–14%, f 5–3%.
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How does Composition of the Woody
Plant Community Differ Between
Interstitial and Natural Reference Sites?

The observed differences in woody plant commu-

nity composition between native reference and

interstitial sites are likely the result of the expanded

species pool—native and introduced—in urban

areas. While there might be multiple confounding

factors (for example, land-use history, plant phys-

iology, abiotic effects), woody plant communities in

the interstitial sites have developed adjacent to al-

tered landscapes, such as residential areas with

human-managed landscapes (yards and neighbor-

hoods, transportation corridors and so on). These

areas are planted and managed with highly selected

species (Padullés Cubino and others 2019b, 2020)

that have the potential to establish in unmanaged

areas such as our interstitial sites, and disperse be-

yond managed areas, such as our reference sites.

Woody plant canopies in interstitial sites across

the six cities were dominated by native species,

while sapling layers had greater percentages of

introduced species (Table 2). While this could be a

function of ecological time lags (for example, phase

in biological invasion; Blackburn and others 2011),

it could also be the result of invasive species culti-

vated in highly managed urban areas that have

successfully dispersed to relatively unmanaged

areas (for example, Buckthorn; Heneghan 2004).

However, the majority of saplings in the interstitial

sites were still native (Table 1, Figure S1). Despite

native woody plant canopies, previous studies

suggest that the presence of introduced species in

the understory layer indicates that interstitial sites

are likely to develop different trajectories than the

reference natural areas over time (Kowarik and

others 2019; Trammell and Carreiro 2011; Tram-

mell and others 2020b), especially if native progeny

are outcompeted by introduced (exotic/invasive)

species. Previous studies comparing urban forests

(for example, large parks) with natural reference

areas have found that the presence of introduced

species was greater in forests within the urban

matrix, particularly in the understory layer (Tem-

pleton and others 2019). While different factors

would contribute to the presence and persistence of

introduced species in different cities (for example

forest age, land-use type and mechanism of intro-

duction; Schoenenberger and Conedera 2013;

Trammell and others 2020b; Jiang and others

2022), interstitial sites—which are embedded

within the urban matrix—are closer in proximity to

residential areas than reference sites. Padullés Cu-

bino and others (2020) found that residential yards

had higher proportions of introduced species com-

pared to reference natural areas in the cities we

studied. It is possible that dispersal through resi-

dential yards may facilitate the spread of intro-

duced species to interstitial sites (Vieira and others

2014). Moreover, invasive species are widely

available through the horticultural industry (for

example, Rhamnus cathartica; Nóvoa and others

2015; Beaury and others 2021). In this study, only

woody plant species were included, and the pres-

ence of introduced species in other herbaceous

layers may provide additional support for this idea

(Trammell and Carreiro 2011; Trammell and others

2020; Deljouei and others 2017; Fratarcangeli and

others 2022).

In forest ecosystems, introduced woody species

that are also invasive are especially concerning due

to their potential to threaten recruitment of native

species (for example, shading out) and out-com-

peting native understory over time (Reinhart and

others 2006; Doroski and others 2018). For exam-

ple, Templeton and others 2019 showed that urban

forests tended to have greater abundance of inva-

sive plants in both the canopy and understory

layers. Other studies have found canopies domi-

nated by native species and understories dominated

by exotics (Trammell and Carreiro 2011; Pregitzer

and others 2019; Trammell and others 2020),

supporting the idea that exotics will become more

important over time.

Among the invasive species that we observed,

Acer platanoides and Rhamnus cathartica are of par-

ticular interest because they were both found in

multiple cities, which suggest they have a wide-

ranging distribution. Rhamnus cathartica has the

ability to establish and persist in disturbed areas

and proliferate in sites undergoing succession

(Zouhar 2015), while Acer platanoides’ strong shade

tolerance allows it to dominate in closed canopies

and suppress native understory seedlings (Munger

2003).

Among the six cities, introduced species were

most common in Boston (Table 1) and it was the

only city with a greater percentage of introduced

species in reference sites than interstitial sites (Ta-

ble 1). Tilia x europaea was both abundant and

dominant in the canopy of one reference site, and it

was also present in the sapling layer, along with

Rhamnus cathartica and Ailanthus altissima (Table 1;

Figure S2). Previous studies of temperate forests in

Massachusetts have found that heavily fragmented

forest patches are more susceptible to invasion of

introduced species (McDonald and others 2008).

Temperate forests of New England have experi-

enced increased fragmentation over recent decades

G. A. Mejı́a and others



resulting from increasing human population

expansion, even at low densities (Vogelmann

1995). Therefore, not just proximity to the urban

matrix, but also forest size, age and structure may

play an important role in the susceptibility of

forested ecosystems to plant species invasion (for

example, Trammell and others 2020b). The

‘‘edges’’ of these fragmented forests are highly dy-

namic, with notably high rates of C fixation and

growth, that vary with species composition (Rein-

mann and Hutyra 2017; Morreale and others

2021). There is thus great interest in how woody

plant species composition is changing in these

increasingly common fragmented landscapes.

In Minneapolis-St. Paul, the relative openness of

forest stands in a prairie landscape may facilitate

the spread of invasive species. One of the reference

sites in this city had high abundance of Rham-

nus cathartica, but only in the sapling layer (Table 1;

Figure S2). This species is known to occur not only

in disturbed areas but can also be found in open

wildlands (Zouhar 2015). Given the openness of

savanna landscapes, reference sites in the Min-

neapolis-St. Paul region may be especially suscep-

tible to this species, which is readily dispersed by

birds and tends to out-compete native understory

plants by creating dark, dense thickets (Mascaro

and Schnitzer 2007; Knight and others 2017).

Rhamnus cathartica also has the advantage of ‘‘ex-

tending’’ the growing season through early leaf-out

and delayed senescence, probably contributing to

its success in the understory (Zouhar 2011). Inter-

estingly, this reference site was the only one

without any Quercus species (a shade-intolerant

genus) and was the only one with Ulmus pulima in

the canopy layer. This species is fast-growing,

which allows it to develop rapidly once established,

becoming highly invasive in prairie ecosystems

(Gaskin and others 2020). The presence of this

invasive species in the canopy layer may facilitate

invasion by Rhamnus cathartica in the understory,

which thrives in the shade of other trees. This

species has also been found spontaneously growing

in residential yards in Boston and Minneapolis-St.

Paul (Cubino and others 2019a), indicating its

ability to spread and establish without human

intervention.

Despite the abundance of introduced and inva-

sive species in interstitial and some reference sites,

native species dominated most sites across cities

(Table 2; Figure S1; Figure S2). Still, there were

important differences in native species dominance

between interstitial and native sites. For example,

reference areas in Baltimore were dominated by

Quercus species (for example, Quercus michauxii,

Quercus alba, Quercus velutina) and co-dominated by

Liriodendron tulipifera (Table 2; Figure S2). How-

ever, Quercus michauxii was not present in any of

the interstitial sites, and Fraxinus Pennsylvanica was

co-dominant in two interstitial sites, but not pre-

sent in any reference sites. Quercus michauxii is

shade-intolerant and requires openings for estab-

lishment allowing it to survive in the understory,

while Fraxinus Pennsylvanica is tolerant to shade and

adaptable in many landscapes (Gucker 2005),

including urban environments, where it is com-

monly planted as part of municipal planting cam-

paigns (Doroski and others 2020) and in residential

yards (Wheeler and others 2017). This indicates

that there might be different ecological sorting

processes occurring in some interstitial sites that

allow for different species than those found in ref-

erence sites to establish and dominate stands. For

example, Schurman and others (2012) found that

environmental constraints, such as N availability

and soil moisture regime, influenced the species

distribution of younger trees in temperate forests,

but stand age was more likely to predict mature

tree distribution. In addition, the loss of late suc-

cessional species impacts the structure and func-

tions of forested ecosystems such as microclimate,

biomass and chemical processes (Ellison and others

2005; Thompson and others 2013).

Comparison of interstitial and reference sites in

our most arid cities (Phoenix and Los Angeles)

produced an interesting contrast to mesic cities.

Woody plant species richness was very low in these

cities, with most sites in Phoenix dominated by a

single species (Table 1; Figure S1; Figure S2).

Additionally, all the species in both the reference

and interstitial sites within these cities were native

and dominated by the same species. For example,

in Los Angeles, Malosma laurina, which was highly

abundant in interstitial sites and one reference site

in Los Angeles, is a successful colonizer following

disturbance (for example, fire; Howard 1992),

making it a resilient species. These results suggest

that forests developing on interstitial sites in Los

Angeles may have similar trajectories to current

native reference sites.

Is Variation in Woody Plant Community
Composition Related to Variation in Soil
C and N Cycle Processes?

A major objective of our study was to determine if

community assembly processes in urban interstitial

areas are leading to the development of novel

ecosystems that have the potential to spread within

and beyond urban areas. We found little evidence

Woody plant-soil relationships in urban areas



for unique urban effects on soils in the interstitial

sites in this study. However, evaluation of plant–

soil interactions in urban ecosystems is complicated

by extensive alteration of soils by human activities.

This alteration can limit the use of urban ecosys-

tems as analogs of global environment change

(McDonnell and Pickett 1990). For example, if soil

profiles at a site are altered by the presence of

human-altered or human-transported materials

such as coal ash or municipal trash (Mejı́a and

others 2022), they cannot be used to learn about

the effects of interacting factors such as changes in

climate, atmospheric chemistry and local species

pool. In this study, interstitial sites were selected to

avoid areas with extensive alteration. Consistent

with this effort, we did not see significant differ-

ences between interstitial and reference sites for

any N cycling variable across cities, suggesting that

these sites were suitable for studying the effects of

altered urban climate, atmospheric chemistry and

species pools on community assembly (McDonnell

and Pickett 1990). However, we did observe sig-

nificant variation in soil processes within individual

cities that sheds light on the causes of variation in N

cycle processes such as the presence of introduced

species, and the influence of these processes on

woody plant dynamics (Figure 3; Figures S3-S8). In

drier regions, these variations may be affected by

local N cycling patterns (for example, deposition),

such as those observed in California (Fenn and

others 1996, 2010).

Although we did not see significant differences

between interstitial and reference sites for any N

cycling variable across cities, city-by-city analysis of

relationships between N dynamics and tree com-

munity composition supports the idea that there

are relationships between these variables that cut

across interstitial and reference sites. For example,

in Baltimore, two interstitial sites located farther

outside the confidence interval in the vegetation

NMDS were the same sites outside the confidence

intervals in the soil PCA. Similarly, in Boston, two

reference sites clustered in the vegetation NMDS

were also clustered in the soil PCA. In Los Angeles,

one interstitial site was distinct on both vegetation

(NMDS) and soil (PCA) analyses. In addition, these

patterns were supported by the CCA that illumi-

nated multiple soil variables (basal respiration,

NO3
-, total inorganic N, microbial biomass N,

potential nitrification and N mineralization, deni-

trification potential, organic matter, bulk density)

that had significant relationships with community

composition across interstitial and reference sites.

However, these dynamics varied by city, indicating

that the mechanisms driving the variation in N

dynamics, and the relationships with woody plant

community composition are context-dependent.

Factors such as soil texture, pH and water-holding

capacity influence N availability in soils and have

been well studied in rural context (Pastor and

others 1984; Pastor and Post 1986), but less so

within urban areas (Groffman and others 2006).

The spread of invasive species can also affect

nutrient cycling (Ehrenfeld 2003; Mueller and

others 2018). There is a clear need for further

analysis of these uncertainties as the N cycle is af-

fected by multiple components of environmental

change that will need to be considered when

evaluating future trajectories of urban (and be-

yond) forests (Mason and others 2022).

While the PCA showed significant and coherent

variation in N cycling among sites, variation in soil

C cycle processes was less marked, that is, there

were few significant correlations between soil C

cycle processes and the two PCA axes from soil

characteristics. Moreover, we did not observe sig-

nificant differences between interstitial and refer-

ence sites for any C cycling variables across cities.

The lack of difference in C dynamics between

interstitial and reference sites was surprising given

their differing proximity to human-dominated

landscapes and the effects of this proximity on

woody plant communities and N cycling. In both

site types, organic matter quality appears to be high

enough to support high levels of microbial biomass

and respiration, which are indices of the nature and

extent of soil C cycling activity (Powlson and others

2017). These C dynamics are controlled to a large

extent by abiotic factors, such as temperature and

moisture, that vary geographically. Cities are also

subject to biological factors that affect soil C

dynamics, such as the presence of earthworms

(Pouyat and others 2002). Our results support the

idea that there is high variation in organic matter

content within forests embedded in the urban

matrix (Zhu and Carreiro 2004). Unraveling the

controls of this variation will be important for

understanding the composition and C sequestra-

tion capacity of future forests.

What are the Implications of Differences
in Woody Plant Community Composition
in the Interstitial Sites for the Structure
and Function of Future Forests Within
and Beyond Urban Areas?

Our results suggest that novel woody plant com-

munities are assembling in interstitial areas in cities

across the USA. These communities may affect the

ecosystem services provided by urban forests (for

G. A. Mejı́a and others



example, wildlife habitat, water quality, climate

regulation; Solomou and others 2019; Berglihn and

Gómez-Beggethun 2021), and the resilience of

these forests to environmental change. To the ex-

tent that environmental changes currently occur-

ring in cities are harbingers of changes that will

occur more broadly across the landscape (McDon-

nell and Pickett 1990), these communities may

spread beyond urban areas and influence forest

structure and function across large areas of North

America. Johnson and Handel (2016) found that

successional trajectories of urban forests have di-

verged between forests that underwent restoration

(for example, invasive species removal) and in-

vaded forests that were not restored, indicating that

novel communities that emerge in unmanaged

areas can become dominant over time. Species

invasions create temporal and ecological processes

that differ from native communities (Blackburn

and others 2011), which suggests that effective

management of invasive species is critical to pre-

vent and mitigate their spread within and beyond

urban areas (Simberloff and others 2010; Dickie

and others 2014; Krumm and others 2016; Brundu

and others 2020).

Our results also suggest that the assembly of

novel communities in urban interstitial areas varies

markedly in cities with different climates. For

example, only native species (albeit very few) were

found in interstitial sites in hot and dry climates of

Los Angeles and Phoenix. In hot and wet Miami, a

much larger pool of both native and introduced

species was present. Pearse and others (2018)

showed that species from both native and exotic

pools were present in both cultivated and sponta-

neous communities in residential yards in the cities

we studied, highlighting the dynamic interactions

between direct and indirect human activities and a

variety of natural biodiversity controls consistent

with global trends in urban environments (Gaert-

ner and others 2017).

The process of novel community assembly will

also vary with land-use legacies and forest patch

size which have a direct effect on a site’s suscepti-

bility to species invasions and soil nutrients (Hall

and others 2013; Ziter and Turner 2018; Ward and

others 2020). Forests growing on land that was

under previous land use (for example, agriculture

or timber) have lower abundance of native wood-

land species when compared with reference forests

(Peña and others 2016). These differences between

land use also point to the importance of soil con-

ditions (for example, nutrient content; Baeten and

others 2010) as a regulator of community assembly.

Young forest patches are more likely to have

invasive plants and increased pH and Ca than older

patches, regardless of land-use context (Trammell

and others 2020b, 2021). As noted above, forest

fragmentation creates edge effects that expose tree

communities to disturbances that may affect stand

microclimate and species physiology (Reinmann

and Hutyra 2017; Morreale and others 2021).

Trammell and others (2022) showed that edge ef-

fects and other environmental factors had greater

influence on species invasion than land-use con-

text in forest patches. Garvey and others (2022)

found that edge effects had a strong effect on soil

respiration in both urban and rural forests. The

interaction of these factors will have a great effect

on future forest structure and function within and

beyond urban areas. These effects are being expe-

rienced in forests around the globle (Essl and others

2020), especially from the spread of woody invasive

species (Jäger and others 2007; Ayanu and others

2015; Le Maitre and others 2020).

Forests embedded in the urban matrix are ex-

posed to stressors from the surrounding matrix that

can produce effects that may be different from

those in less disturbed landscapes (Trammell and

others 2022). These effects can include altered soil

chemistry, elevated temperatures and light re-

gimes, altered foliage (for example, caterpillars)

and soil fauna (for example, earthworms), polli-

nation and seed dispersal agents, and changes in

the nature and frequency of disturbance (Pouyat

and others 2007, 2010; Lerman and others 2021b).

Further research in forests along urban to rural

gradients is needed to assess these effects and their

relevance to forests beyond urban areas.

CONCLUSIONS

Our results show that urban land-use change has

resulted in alterations to natural ecosystems

embedded in the urban matrix, creating conditions

for novel woody plant assemblages to emerge with

potentially altered functions that persist in the ab-

sence of human intervention. These results have

implications for how we assess and manage the

urban forests across the USA. As novel communi-

ties emerge, there will be a need for assessments of

how they function relative to demands for specific

ecosystem services, and decisions about whether

management actions can affect these outcomes will

need to be made.

For example, urban forest restoration efforts in

many cities focus on invasive species removal

(Pregitzer and others 2019). Invasive species can

change soil conditions and/or adapt to altered soils,

but whether soil conditions drive community

Woody plant-soil relationships in urban areas



dynamics or vice versa is still poorly understood

(Ward and others 2020). Our results support the

idea that these community dynamics are associated

with variation in local soil conditions, especially N

availability (Smith and others 2020, 2021; Mejı́a

and others 2022). There is a clear need for further

research on how soil conditions interact with

changing climate, herbivory pressure (for example,

deer) and other environmental changes (Temple-

ton and others 2019) to influence the trajectories,

functions and services of forest communities.

Our results suggest that urban interstitial com-

munities are a useful experimental venue for

investigating the structure and function of future

forests. These communities are highly variable and

dynamic and illustrate a wide range of possible

future forest trajectories that have the potential to

spread beyond urban areas under changing envi-

ronmental conditions. As human activities expand

at the residential–wildland interface, unmanaged

interstitial areas are likely to function as mediators

of native, exotic, cultivated and spontaneous spe-

cies pools (Pearse and others 2018), potentially

altering natural habitats on regional scales and

influencing the structure and function of future

forests well beyond urban areas.
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